
Cornell CS 5740: Natural Language Processing
Yoav Artzi, Spring 2023

Warming Up
Text Classification, Data Basics, and Perceptrons

• Text classification

• Working with data splits

• Linear perceptrons

Table of Contents

• One of the most basic NLP tasks

• Input: a text

• Output: a label from a predefined set

• Learning problem: estimate the parameters of a function that
maps a text to its label

Text Classification

• Input: email

• Output: spam/ham

• Setup:

- Get a large collection of example emails, each
labeled “spam” or “ham”

- Note: someone has to hand label all this data!

- Goal: learn to predict labels of new, future emails

• Features: the attributes used to make the ham / spam
decision

- Words: FREE!

- Text Patterns: $dd, CAPS

- Non-text: SenderInContacts

Spam vs. Ham

Dear Sir.

First, I must solicit your confidence in this
transaction, this is by virture of its nature
as being utterly confidencial and top
secret. …

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
SUBJECT.

99 MILLION EMAIL ADDRESSES
 FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm
beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, I know it was
working pre being stuck in the corner, but
when I plugged it in, hit the power
nothing happened.

Text Classification

• Input: email

• Output: spam/ham

• Setup:

- Get a large collection of example emails, each
labeled “spam” or “ham”

- Note: someone has to hand label all this data!

- Goal: learn to predict labels of new, future emails

• Features: the attributes used to make the ham / spam
decision

- Words: FREE!

- Text Patterns: $dd, CAPS

- Non-text: SenderInContacts

Spam vs. Ham

Dear Sir.

First, I must solicit your confidence in this
transaction, this is by virture of its nature
as being utterly confidencial and top
secret. …

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
SUBJECT.

99 MILLION EMAIL ADDRESSES
 FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm
beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, I know it was
working pre being stuck in the corner, but
when I plugged it in, hit the power
nothing happened.

Text Classification

• Input: email

• Output: spam/ham

• Setup:

- Get a large collection of example emails, each
labeled “spam” or “ham”

- Note: someone has to hand label all this data!

- Goal: learn to predict labels of new, future emails

• Features: the attributes used to make the ham / spam
decision

- Words: FREE!

- Text Patterns: $dd, CAPS

- Non-text: SenderInContacts

Spam vs. Ham
Text Classification

Dear Sir.

First, I must solicit your confidence in this
transaction, this is by virture of its nature
as being utterly confidencial and top
secret. …

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
SUBJECT.

99 MILLION EMAIL ADDRESSES
 FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm
beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, I know it was
working pre being stuck in the corner, but
when I plugged it in, hit the power
nothing happened.

• Input: email

• Output: spam/ham

• Setup:

- Get a large collection of example emails, each
labeled “spam” or “ham”

- Note: someone has to hand label all this data!

- Goal: learn to predict labels of new, future emails

• Features: the attributes used to make the ham / spam
decision

- Words: FREE!

- Text Patterns: $dd, CAPS

- Non-text: SenderInContacts — text is not alone 😍

Spam vs. Ham
Text Classification

Dear Sir.

First, I must solicit your confidence in this
transaction, this is by virture of its nature
as being utterly confidencial and top
secret. …

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
SUBJECT.

99 MILLION EMAIL ADDRESSES
 FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm
beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, I know it was
working pre being stuck in the corner, but
when I plugged it in, hit the power
nothing happened.

• One of the most basic NLP tasks

• Let be a vocabulary, be a set of classes, and be the set
of all texts

• A text is a sequence of tokens

- How do we go from text to tokens? 🤔

• A classifier is a function (i.e.,)

• Learning problem: estimate classifier parameters

𝒱 𝒴 𝒳

x̄ ∈ 𝒳 x̄ = ⟨x1, …, xn⟩, xi ∈ 𝒱

fθ : 𝒳 → 𝒴 fθ(x̄) = y

θ

Text Classification

Goal: classify documents into broad semantic topics

• Which one is the POLITICS document? Did this require a deep analysis?

• Usually start with a labeled corpus containing examples of each class

• Is this a good way to think about the topic of a text?

Example: Text Categorization
Text Classification

Obama is hoping to rally support for
his $825 billion stimulus package on
the eve of a crucial House vote.
Republicans have expressed
reservations about the proposal,
calling for more tax cuts and less
spending. GOP representatives
seemed doubtful that any deals
would be made.

California will open the 2009 season
at home against Maryland Sept. 5
and will play a total of six games in
Memorial Stadium in the final football
schedule announced by the
Pacific-10 Conference Friday. The
original schedule called for 12 games
over 12 weekends.

Example: Sentiment Analysis
Text Classification

Goal: detect the overall sentiment of the text

This movie was great! Will watch again

Not bad at all! but not a masterpiece

Could never enjoy, even with closed eyes

Example: Sentiment Analysis
Text Classification

Goal: detect the overall sentiment of the text

🤗

🙂

🤮

This movie was great! Will watch again

Not bad at all! but not a masterpiece

Could never enjoy, even with closed eyes

Example: Sentiment Analysis
Text Classification

🤗

🙂

🤮

This movie was great! Will watch again

Not bad at all! but not a masterpiece

Could never enjoy, even with closed eyes

Goal: detect the overall sentiment of the text

• Did this require more reasoning compared to categorization?

• Just spotting individual words is not enough

• Is this a reasonable way to model sentiment?

Example: Sentiment Analysis
Text Classification

Goal: detect the overall sentiment of the text

🤗

🙂

🤮

This movie was great! Will watch again

Not bad at all! but not a masterpiece

Could never enjoy, even with closed eyes

• Did this require more reasoning compared to categorization?

• Just spotting individual words is not enough

• Is this a reasonable way to model sentiment?

Example: Sentiment Analysis
Text Classification

Goal: detect the overall sentiment of the text

🤗

🙂

🤮

This movie was great! Will watch again

Not bad at all! but not a masterpiece

Could never enjoy, even with closed eyes

• The most common approach is using supervised learning

• Assume an annotated dataset of text-label pairs

• Use this data to train your model, and life is great 🏝

• Simple enough, right?

{(x̄(j), y(j)}N
j=1 N

Learning Setup
Text Classification

• What is our goal when we train a model?

• We want a model that will preform as good as
possible (i.e., 🚀) when it is given data in the wild

• So, need to test our model on this data

• But: this is not possible — why?

• The question is: how can we get as close as
possible to this with the data we have

Training with Data

Data

• The more data we have for training the better

• The more data we have for testing the better

• So: train on all the data, and test on all the data 🤓

• The biggest possible number of examples for both
training and testing 👍

• Any issues?

- We optimize our parameters to the test data

- Can just do great by memorizing it, performance
means little

Proposal 1
Data Splits

Train and
Test

Data

• The more data we have for training the better

• The more data we have for testing the better

• So: train on all the data, and test on all the data

• The biggest possible number of examples for both
training and testing 👍

• Any issues?

- We optimize our parameters on the test data

- Can just do great by memorizing it, performance
means little

Proposal 1
Data Splits

Train and
Test

Data

• The more data we have for training the better

• The more data we have for testing the better

• So: train on all the data, and test on all the data

• The biggest possible number of examples for both
training and testing 👍

• Any issues?

- We optimize our parameters on the test data

- Can just do great by memorizing it, performance
means little 🤦

Proposal 1
Data Splits

Train and
Test

Data

• Let’s split train and test

• How to split? Need to balance 😵💫

- More training data → better parameter estimates

- More test data → evaluation is more reliable

• If we have very little data, consider cross validation → why?

• Any issues?

- During development we train and test many times to
evaluate design decisions and select hyper parameters

- As we use the test data more and more, we overfit to it,
and it reflects reality less and less

Proposal 2: Separate Train and Test
Data Splits

Train

Data

Test

• Let’s split train and test

• How to split? Need to balance

- More training data → better parameter estimates

- More test data → evaluation is more reliable

• If we have very little data, consider cross validation → why?

• Any issues?

- During development we train and test many times to
evaluate design decisions and select hyper parameters

- As we use the test data more and more, we overfit to it,
and it reflects reality less and less

Proposal 2: Separate Train and Test
Data Splits

Train

Data

Test

• Let’s create another split to distinguish development testing from
real testing

• How to split? Same considerations

• How to choose between using test and dev?

- Ideally: use test only once, and never look at the data 🙈

- This way you make no decisions based on it, and it reflects real-
life performance as well as possible

• No free lunch: slicing the same dataset to smaller sets

• Are we happy? Any issues?

- Contemporary ML methods require model selection

- Can we use the development data?

Proposal 3: train/test/dev
Data Splits

Train

Data

Test

Dev

• Let’s create another split to distinguish development testing from
real testing

• How to split? Same considerations

• How to choose between using test and dev?

- Ideally: use test only once, and never look at the data

- This way you make no decisions based on it, and it reflects real-
life performance as well as possible

• No free lunch: slicing the same dataset to smaller sets

• Are we happy? Any issues?

- Contemporary ML methods require model selection

- Can we use the development data?

Proposal 3: train/test/dev
Data Splits

Train

Data

Test

Dev

• Let’s create a special set for model selection

• After training, we test on the development data

• Why can’t we use validation for testing?

- Because the model selection decision will
overfit to it

• All is well?

- Almost!

Proposal 4: train/test/dev/validation
Data Splits

Train

Data

Test

Dev

Val

• Let’s create a special set for model selection

• After training, we test on the development data

• Why can’t we use validation for testing?

- Because the model selection decision will
overfit to it

• All is well?

- Almost!

Proposal 4: train/test/dev/validation
Data Splits

Train

Data

Test

Dev

Val

• Test and development are often standard in NLP tasks — why
is this not ideal? So why do it?

• Validation is usually not standard, and just sampled from
training data

- Because the need for it is method dependent

- Good to keep it stable for debugging

• Want the data to give you the most accurate picture of
deployment?

- Shuffle dev and train once in a while

- Touch test as little as possible

‣ Do I want to use test? Yes… am I deploying next? So, no!

A Few Final Considerations
Data Splits

Train

Data

Test

Dev

Val

• In most case, you won’t get the data nicely
packaged and organized

• Handling it well is on you, or you will get hit when
you deploy

• It gets more complicated in non-stationary
scenarios — almost any deployed system

A Few Final Considerations
Data Splits

Train

Data

Test

Dev

Val

• Annotation

• Evaluation

• Data source issues

- Ownership, privacy

• Bias

• Validity for deployment

Other Issues
Data

Data

• A class of models that scores outputs using a linear function

• We will discuss the simple Perceptron linear model and learning
algorithm

• Good to know about, but won’t discuss:

- Computing distributions with the addition of normalization

- Such discriminative model (i.e., that compute a conditional
distribution) vs. generative model (i.e., that compute a joint
distribution)

Linear Models

• Let be a weight vector, is the set of output
labels, and be a feature computation function

• Given an example text , the linear binary prediction rule (i.e., to
find the best output):

• Example problems?

w 𝒴 = {−1,1}
ϕ

x̄

y = sign(w⊤ϕ(x̄))

The Binary Case
Linear Models

The Perceptron

Published: July 8, 1958
Copyright © The New York TimesJuly 8,1958

Frank Rosenblatt ’50, Ph.D. ’56, works on the
“perceptron” – what he described as the first machine
“capable of having an original idea.”

• A very simple algorithm to train a linear model

• An error-driven algorithm

• Additive update rule

• Will cover the binary and multi-class case

- Structured case is a simple generalization of multi-class (but
won’t cover it)

• Nice theoretical properties (will not discuss)

• Can be described in a slide, and implemented easily

The Perceptron

• Given:

- A feature function

- An annotated training set

• Output:

- A weight vector

ϕ

𝒟 = {(x̄(i), y(i))}N
i=1

w

Binary Case
The Perceptron

1. Initialize weight vector with zeros:

2. Iterate over examples until there are no errors:

2.1.Make a prediction:

2.2.If (i.e., the prediction is correct): goto next example

2.3.Else: adjust weights

w = 0̄

(x̄(i), y(i)) ∈ 𝒟

y* = sign(w⊤ϕ(x̄(i)))

y* = y(i)

w = w − y*ϕ(x̄(i))

Binary Case
The Perceptron

• If we made an error on , and the label is positive :

- The new weight vector is

- The prediction rule is:
:

- Inside the :

- So more likely (but not guaranteed) that

• Do the same at home for

x̄(i) y(i) = 1

w′ ′ = w′ + ϕ(x̄(i))

y* = sign(w′ ′ ⊤ϕ(x̄(i))) = sign((w′ + ϕ(x̄(i)))⊤ϕ(x̄(i)))

sign
(w′ + ϕ(x̄(i)))⊤ϕ(x̄(i)) = w′ ⊤ϕ(x̄(i)) + |ϕ(x̄(i)) |2 > w′ ⊤ϕ(x̄(i))

sign(w′ ′ ⊤ϕ(x̄(i))) > 0

y(i) = − 1

Binary Case: What is it doing?
The Perceptron

Dataset I:

Dataset II:

ϕ(x̄(1)) = [1,1] y(1) = 1
ϕ(x̄(2)) = [1, − 1] y(2) = 1
ϕ(x̄(3)) = [−1, − 1] y(3) = − 1

ϕ(x̄(1)) = [1,1] y(1) = 1
ϕ(x̄(2)) = [1, − 1] y(2) = 1
ϕ(x̄(3)) = [−1, − 1] y(3) = − 1
ϕ(x̄(4)) = [0.25,0.25] y(3) = − 1

Two Binary Examples
The Perceptron

1. Initialize weight vector with zeros:

2. Iterate over examples until there
are no errors:

2.1.Make a prediction:

2.2.If (i.e., the prediction is correct):
goto next example

2.3.Else: adjust weights

w = 0̄

(x̄(i), y(i)) ∈ 𝒟

y* = sign(w⊤ϕ(x̄(i)))

y* = y(i)

w = w − y*ϕ(x̄(i))

• The perceptron finds a separating hyperplane

• Finding the hyperplane:

ϕ(x̄(1)) = [1,1] y(1) = 1
ϕ(x̄(2)) = [1, − 1] y(2) = 1
ϕ(x̄(3)) = [−1, − 1] y(3) = − 1

w = [1,1]

w⊤[x, y] = 1 × x + 1 × y = 0

Separating Hyperplane
The Perceptron

x̄(2)

x̄(1)

x̄(3)

Separable Case
The Perceptron

• So what’s going on with the second dataset?

ϕ(x̄(1)) = [1,1] y(1) = 1
ϕ(x̄(2)) = [1, − 1] y(2) = 1
ϕ(x̄(3)) = [−1, − 1] y(3) = − 1
ϕ(x̄(4)) = [0.25,0.25] y(3) = − 1

w = [0,0]
w = [1,1]
w = [0.75,0.75]
w = [0.5,0.5]
w = [0.25,0.25]
w = [0,0]

Separating Hyperplane
The Perceptron

x̄(2)

x̄(1)

x̄(3)

x̄(4)

Is there a separating hyperplane here?

• Decision rule:

• Algorithm stays the same!

• Only difference: add a dummy always-on feature

 →

y* = sign(w⊤ϕ(x̄(i)))

ϕ(x̄(1)) = [1,1] y(1) = 1
ϕ(x̄(2)) = [1, − 1] y(2) = 1
ϕ(x̄(3)) = [−1, − 1] y(3) = − 1
w = [0,0] ∈ ℝ2

ϕ(x̄(1)) = [1,1,1] y(1) = 1
ϕ(x̄(2)) = [1,1, − 1] y(2) = 1
ϕ(x̄(3)) = [1, − 1, − 1] y(3) = − 1
w = [0,0,0] ∈ ℝ3

Adding Bias
The Perceptron

• Let be a weight vector, is the set of all output labels, and be
a feature computation function

• Given an example text and a potential label , the score of
assigning the label to is:

• The linear prediction rule (i.e., to find the best output):

• This requires a slightly different representation of

w 𝒴 ϕ

x̄ y ∈ 𝒴
y x̄

w⊤ϕ(x̄, y)

y = arg max
y∈𝒴

w⊤ϕ(x̄, y)

w

Multi-class Formulation
Linear Models

• Each feature-label combination has weight assigned to it in the
weight vector

• Both and the features computed by follow a block structure,
so and , such that:

w

w ϕ
w ∈ ℝd ϕ(x̄, y) ∈ ℝd

d = |𝒴 | × number of features

Block Feature Representation
Linear Models

Block 1 Block 2 Block |𝒴 |[]

• Consider a simple text categorization problem

•

• Assume we have four binary features for the words win, game, election,
or car appear

𝒴 = {SPORTS, POLITICS, OTHER}

Block Feature Representation Example
Linear Models

… win the election …

[1,0,1,0]

ϕ(x̄, SPORTS) = [1 0 1 0 0 0 0 0 0 0 0 0]
ϕ(x̄, POLITICS) = [0 0 0 0 1 0 1 0 0 0 0 0]

ϕ(x̄, OTHER) = [0 0 0 0 0 0 0 0 1 0 1 0]

• Each feature computed by gets a weight in

• Compare labels based on their linear scores:

• The highest scoring label is

ϕ w

ϕ(x̄, SPORTS) = [1 0 1 0 0 0 0 0 0 0 0 0]
ϕ(x̄, POLITICS) = [0 0 0 0 1 0 1 0 0 0 0 0]

ϕ(x̄, OTHER) = [0 0 0 0 0 0 0 0 1 0 1 0]
w = [1 1 − 1 − 2 1 − 1 1 − 2 −2 − 1 − 1 1]

w⊤ϕ(... win the election ..., SPORTS) = 1 × 1 + (−1) × 1 = 0
w⊤ϕ(... win the election ..., POLITICS) = 1 × 1 + 1 × 1 = 2

w⊤ϕ(... win the election ..., OTHER) = (−2) × 1 + (−1) × 1 = − 3

POLITICS

Block Feature Representation Example
Linear Models

• Just like before …

• Given:

- A feature function

- An annotated training set

• Output:

- A weight vector

ϕ

𝒟 = {(x̄(i), y(i))}N
i=1

w

Multi-class Case
The Perceptron

1. Initialize weight vector with zeros:

2. Iterate over examples until there are no errors:

2.1.Make a prediction:

2.2.If (i.e., the prediction is correct): goto next example

2.3.Else: adjust weights

w = 0̄

(x̄(i), y(i)) ∈ 𝒟

y* = arg max
y∈𝒴

w⊤ϕ(x̄(i), y)

y* = y(i)

w = w + ϕ(x̄(i), y(i)) − ϕ(x̄(i), y*)

Multi-class Case
The Perceptron

• Error on , predicted :

- New weight vector is:

- Scoring breaks along block structure:

‣ Let the block for label is

‣ Because all features are 0’s outside , the score for label is:

‣ Now you can proceed exactly like the binary case!

‣ Except that the update modifies both the score for label (increase) and the
score for label (decrease)

‣ So, two birds for the price of one bird!

x̄(i) y* ≠ y(i)

w′ ′ = w′ + ϕ(x(i), y(i)) − ϕ(x(i), y*)

y w[y]

ϕ(x(i), y) w[y] y
w⊤ϕ(x(i), y) = w[y]⊤ϕ(x(i), y)[y]

y(i)

y*

Multi-class Case: What is it doing?
The Perceptron

• Separability: some parameters get the training
set perfectly correct

• Convergence: if the training is separable,
perceptron will eventually converge

• Mistake Bound: the maximum number of
mistakes (binary case) related to the margin or
degree of separability

Theoretical Properties
Perceptron Learning

Separable

Non-separable

• Noise: if the data isn’t separable, weights
might thrash

- Averaging weight vectors over time can
help (averaged perceptron)

• Mediocre generalization: finds a “barely”
separating solution

• Overtraining: test / held-out accuracy
usually rises, then falls

- Overtraining is a kind of overfitting

Issues
Perceptron Learning

1. Initialize weight vector with zeros:

2. Iterate over examples until
there are no errors:

2.1.Make a prediction:

2.2.If (i.e., the prediction is
correct): goto next example

2.3.Else: adjust weights

w = 0̄

(x̄(i), y(i)) ∈ 𝒟

y* = arg max
y∈𝒴

w⊤ϕ(x̄(i), y)

y* = y(i)

w = w + ϕ(x̄(i), y(i)) − ϕ(x̄(i), y*)

Example
Perceptron

Drugs

• Apo-Loperamide

• Minims Tropicamide

• Mexate

• Maxair

Names

• Alexander

• Anders

• Frederick

• Donald

Task: develop a feature
function, and train a
classifier using the
Perceptron. Use at
least two features.

Test data

1. Initialize weight vector with zeros:

2. Iterate over examples until
there are no errors:

2.1.Make a prediction:

2.2.If (i.e., the prediction is
correct): goto next example

2.3.Else: adjust weights

w = 0̄

(x̄(i), y(i)) ∈ 𝒟

y* = arg max
y∈𝒴

w⊤ϕ(x̄(i), y)

y* = y(i)

w = w + ϕ(x̄(i), y(i)) − ϕ(x̄(i), y*)

Example
Perceptron

Drugs

• Apo-Loperamide

• Minims Tropicamide

• Mexate

• Maxair

Names

• Alexander

• Anders

• Frederick

• Donald

Task: develop a feature
function, and train a
classifier using the
Perceptron. Use at
least two features.

Test data

• Roderick

• Malcolm

• Tebamide

• Dexedrine

